Methods to establish native wildflowers into tall fescue pasturelands

USDA NRCS-CIG Project

Ben Tracy, Professor

School of Plant and Environmental Sciences

Virginia Tech

The 'players' for wildflower establishment work...

Dr. Ben Tracy	Project Lead; Professor, Virginia Tech	
Dr. Catherine Larochelle	Assistant Professor, Virginia Tech	
Dr. Michael Flessner	Assistant Professor, Virginia Tech	
Dr. Leighton Reid	Assistant Professor, Virginia Tech	
Dr. Parry Kietzman	Research Associate, Virginia Tech	
Dr. Gabriel Pent	Superintendent, Virginia Tech's Shenandoah Valley Agricultural Research and Extension Center	
Elizabeth Chishimba	Ph.D. student, Virginia Tech	
Jonathan Kubesch	Ph.D. student, Virginia Tech	
David Bellangue	M.S. student, Virginia Tech	
Raven Larcom	M.S. student, Virginia Tech	
Dr. Patrick Keyser	Professor, University of Tennessee; Director, Cen- ter for Native Grasslands at the University of Ten- nessee	
Dr. Laura Russo	Assistant Professor, University of Tennessee	
Jessica Prigge	Ph.D. student, University of Tennessee	
Caroline Sherony	USDA-NRCS, Natural Resource Specialist	
Edward Henry	USDA-NRCS, National Ecologist	

Tall fescue pastures are not diverse... but we can change that...

J Wagner

J Wagner

Diversified (D5) and Conventional (C2) sites in SW VA (June 14th, 2021).

Pollination Ecosystem Services - High

Pollination Ecosystem Services - Low

Pasture and Rangeland today...

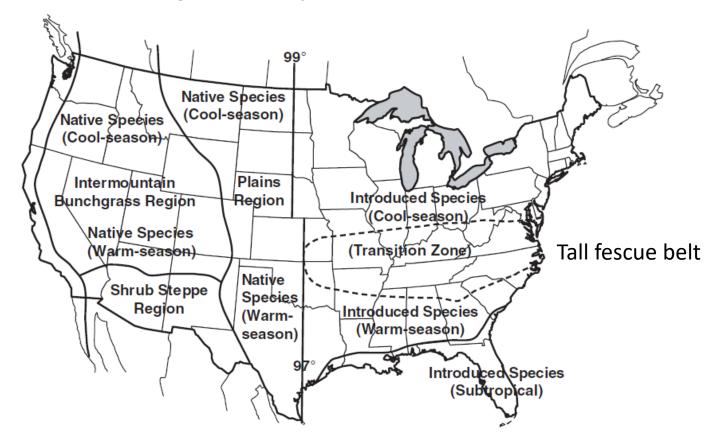


FIG. 1.5. Major grassland areas of the USA at present. Introduced species are dominant in northern areas along the West Coast and in areas of the east that were formerly wooded. Southern areas along the West Coast have primarily winter annuals in non-irrigated areas. (Constructed from authors' knowledge and Barnes, 1948.)

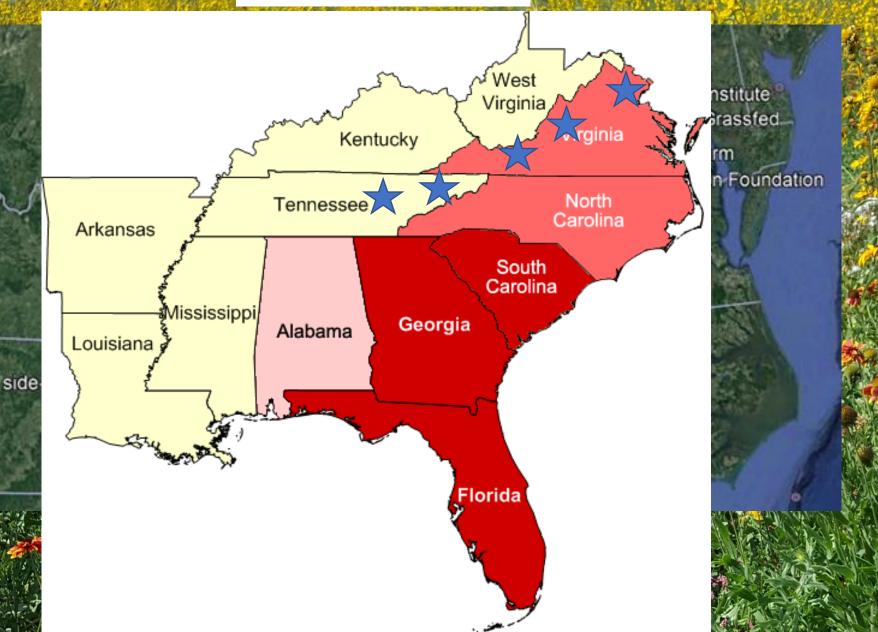
Project Goals

• Purpose

• Develop the necessary expertise to conserve pollinators in actively grazed pastures in the fescue belt of the Southeastern U.S.

• Goal

• Update the NRCS conservation practice standard for forage and biomass planting (code 512) to include guidance for pollinator conservation in actively grazed pasture lands in the 37 million-acre fescue belt


Funding Period

• April 2020- March 2025

Objectives

- 1) Document the establishment and persistence of wildflowers in grazing systems
- 2) Assess the benefits of wildflower-enhanced grazing systems for cattle and pollinators
- 3) Evaluate socio-economic aspects of wildflowerenhanced grazing systems
- 4) Create educational materials and provide outreach about wildflower-enhanced grazing systems

Study Locations

Study 1: Evacuating different methods to establishment wildflowers into fescue swards (Summer, Fall 2020)

Experimental Design

		Ga		
Fence				
2D Ctrl seeding	6A Roundup Strip			
4D Pastora	2A Ctrl seeding			
2D Ctrl seeding	1A Cimarron			
9D Strip till	3A Outrider			
7D Roundup weaken	2A Ctrl seeding			
5D Plateau	4A Pastora			
8D Select max	8A Select max			
3D Outrider	5A Plateau			
1D Cimarron	7A Roundup weaken			
6D Roundup strip	9A Strip till			
2C Ctrl seeding	5B Plateau			
5C Plateau	3B Outrider			
3C Outrider	2B Ctrl seeding			
7C Roundup weaken	7B Roundup weaken			
2C Ctrl seeding	8B Select max			
6C Roundup strip	2B Ctrl seeding			
1C Cimarron	6B Roundup Strip			
9C Strip till	4B Pastora			
4C Pastora	9B Strip till			
8C Select max	1B Cimarron			

10 x 60 ft plots, 4 Blocks A, B,C, D, 30 ft buffer

Treatments

(Herbicide, Active Ingredient)

Control

Pastora (Nicosulfuron & Metsulfuron methyl)

Roundup Half Rate (Glyphosate)

Roundup Standard Rate (Glyphosate)

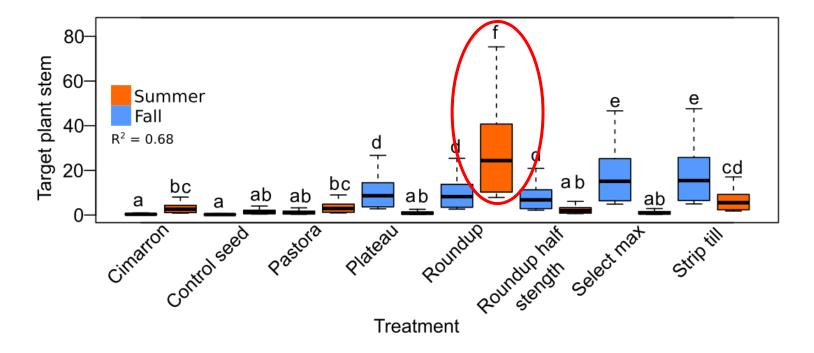
Plateau (Imazapic)

Cimarron (Metsulfuron methyl & Chlorsulfuron)

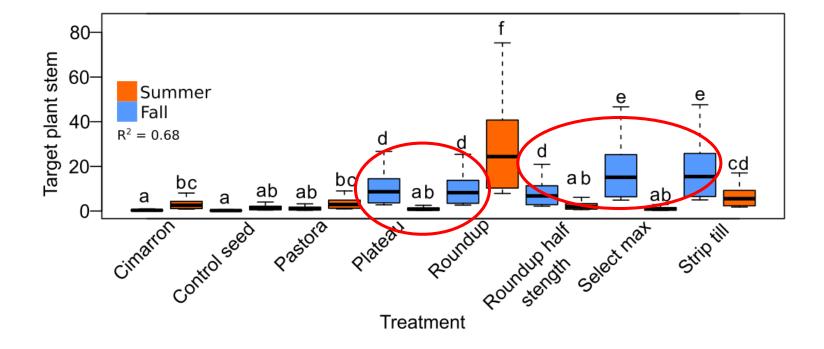
Select Max (Clethodim)

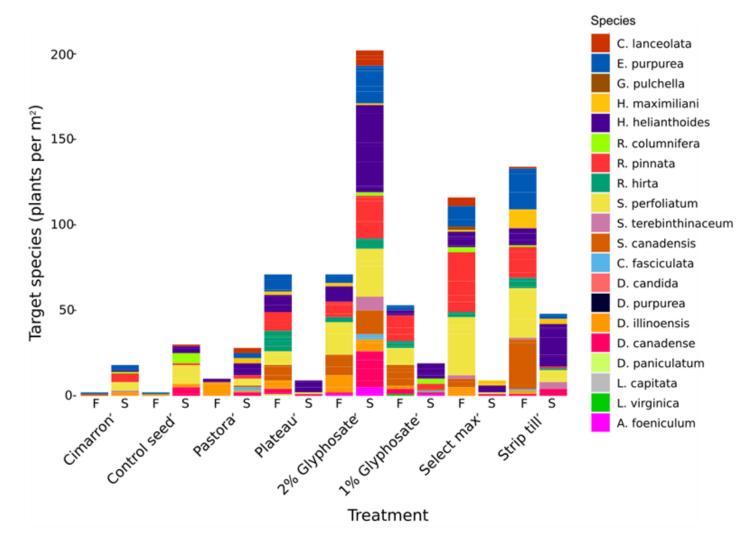
Strip till (disk plowed twice)

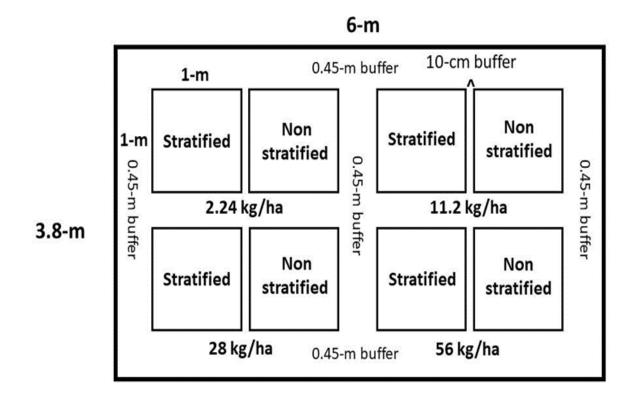
Species list for Site Preparation Experiment


- Coreopsis lanceolata
- Echinacea purpurea
- Gaillardia pulchella
- Helianthus maximiliani
- Heliopsis helianthoides
- Ratibida columnifera
- Ratibida pinnata
- Rudbeckia hirta
- Silphium perfoliatum
- Silphium terebinthinaceum
- Solidago canadensis

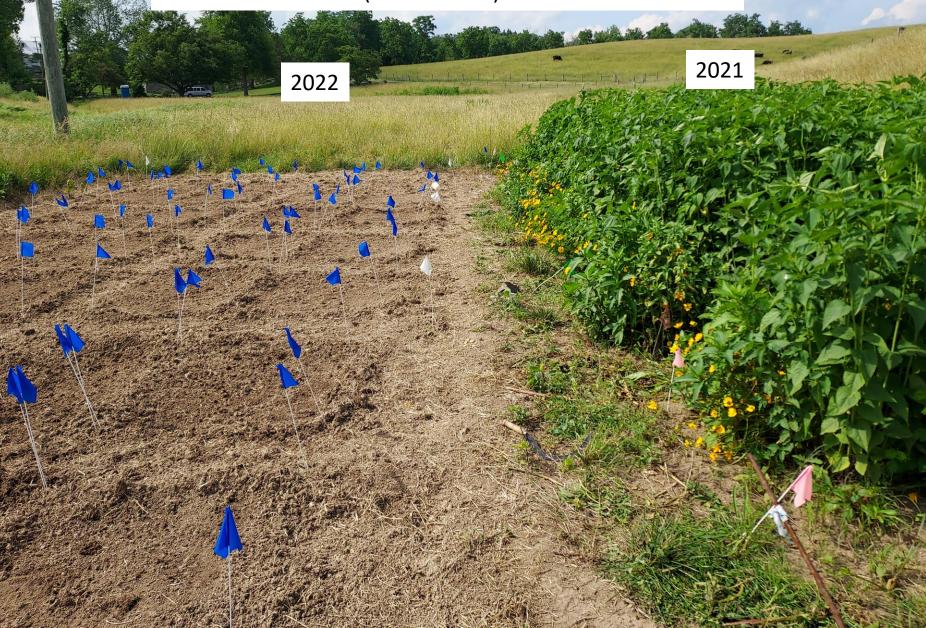
- Chamaecrista fasciculata
- Dalea candida
- Dalea purpurea
- Desmanthus illinoensis
- Desmodium canadensis
- Desmodium paniculatum
- Lespedeza capitata
- Lespedeza virginica
- Agastache foeniculum




Summer sown 2% Roundup had highest average target plant richness and abundance


Next 5 best treatments were all fall sown

WF species composition did not vary greatly among treatments although Roundup application produced a more even distribution of species



Other establishment experiments – varying seeding rates, and cold treatments (stratification)

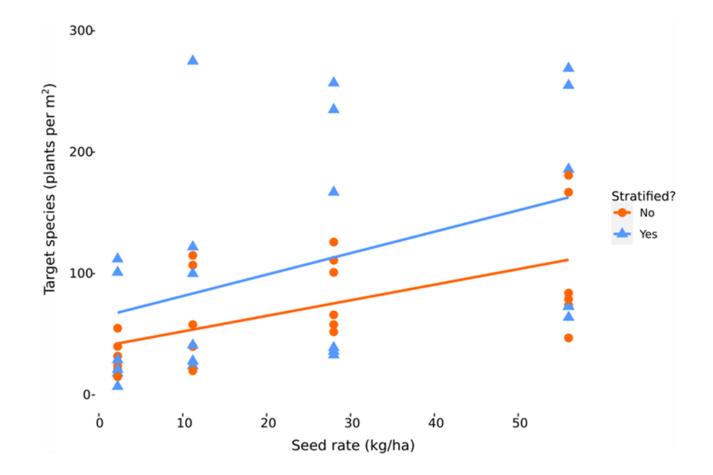
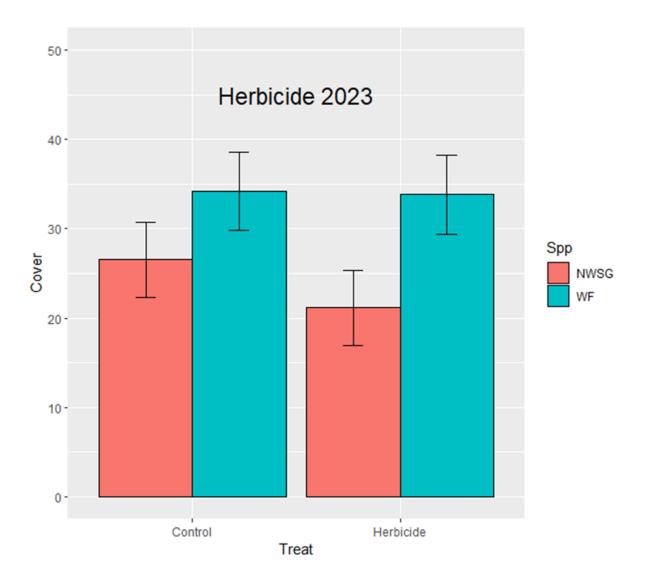
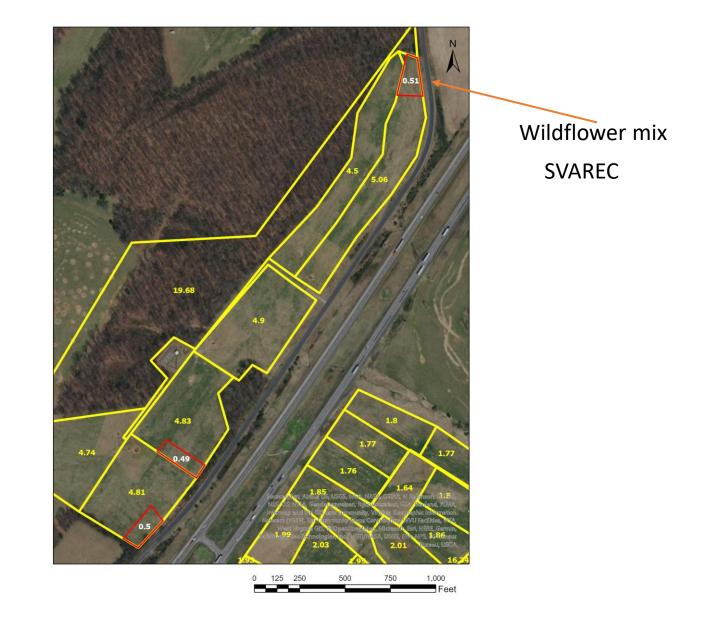


Figure 1. Experimental layout for one replication of the seed rate and stratification plot. Seeding rate plots split into m² plots with one half sown with stratified seed and the other half sown with non-stratified seed at indicated seeding rate and separated by a 10 cm buffer. A 0.45 m buffer surrounds the plots on all sides.


Other establishment experiments – varying seeding rates, and cold treatments (stratification)

Higher seeding rates increased target plant establishment especially for non cold-treated seed..


Some other establishment experiments...<u>dormant season</u> application of Roundup, varying seeding rates. PhD student Jonathan Kubesch

New tillage experiment to explore non-chemical methods for wildflower establishment. MS student Harry Stewart

Side-by-side Grazing Study Virginia Tech CIG study

Planted June 6, 2022

				% of mix
Common Name	Scientific Name	Туре	target lbs/ac	by wt.
	Symphyotrichum			
Aster, Calico	lateriflorum	Wildflower	0.2	2.6
Bergamot, Wild	Monarda fistulosa	Wildflower	0.1	. 1.7
Goldenrod, Early	Solidago juncea	Wildflower	0.1	. 0.8
Goldentop, Flat-top	Euthamia graminifolia	Wildflower	0.0	0.4
Milkweed, Common	Asclepias syriaca	Wildflower	1.9	30.1
	Pycnanthemum			
Mountainmint, Narrow-leaf	tenuifolium	Wildflower	0.02	2 0.4
Pea, Partridge	Chamaecrista fasciculata	Legume	2.0) 32.4
Sunflower, Ox Eye	Heliopsis helianthoides	Wildflower	1.2	20.1
Susan, Black-eyed	Rudbeckia hirta	Wildflower	0.1	. 1.3
Ticktrefoil, Panicleleaf	Desmodium paniculatum	Legume	0.7	' 10.5
Totals		10	6.2	100.4

10 6.2

Great Plains

605NT

Wildflower diversified section of fescue pasture

Finding ~5x more pollinators here

The problem (or maybe opportunity?) of thistles during establishment phase

Some conclusions about WF establishment

- Of herbicide options roundup seems to work best, but tillage is promising too.
- Higher seeding rates may help but are cost prohibitive (our mixes were \$50-60/lbs., fescue seed is \$5-6/lbs. for comparison).
- WF establishment seems to benefit from cold stratification or fall planting but results inconsistent
- Wildflowers benefit pollinators can be added to pastures without negatively impacting cattle performance.
- Wildflowers are challenging to establish into tall fescue swards patience is required!

Side-by-side grazing trials

Summer 2022

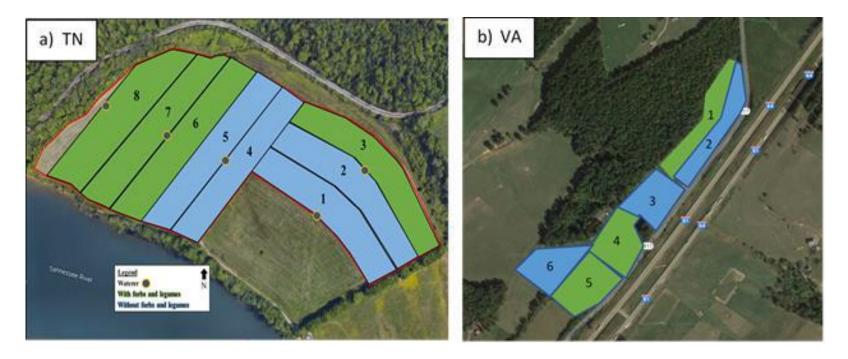


Figure 5: Plot layouts of the side-by-side grazing trials that will be established on the research stations at a) University of Tennessee and b) Virginia Tech. Green plots indicate paddocks that will be overseeded with wildflowers compared with the blue paddocks that will be conventional grass pastures